ISSN: 2320-2882

IJCRT.ORG

INTERNATIONAL JOURNAL OF CREATIVE RESEARCH THOUGHTS (IJCRT)

An International Open Access, Peer-reviewed, Refereed Journal

Wavelet based ANN Approach for Transformer Protection

¹Mr. Abhijit Dhanraj Lokhande, ²Prof. P. G. Bonde ¹M.E Student Dr. Sau. KGIET Darapur Dist. Amravati , ²Dr. Sau. KGIET Darapur Dist. Amravati

Abstract: -

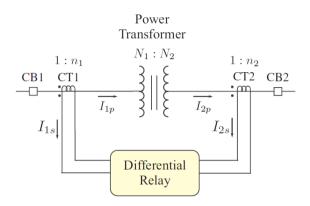
Currently, the differential function has been widely used in transformer protection relay. However, the main issue of this technique is assigned to the relay mis operation during the presence of inrush currents and current transformer (CT) saturation. In the literature, these limitations have been overcome with the use of tools based on artificial intelligence and signal processing, such as the methods based on artificial neural networks and wavelet transform. This paper proposes a method based the ANNs and wavelet transform to detect and classify disturbance in the power transformer accurately. The algorithm uses wavelet based disturbance detector in order to detect any disturbance related to a power transformer, whereas a neural network based routine is used to classify the disturbance type (internal fault, external fault and transformer energization) appropriately, as well as to classify the internal faults. Several events were simulated, such as external and internal faults, with variations of fault resistance, fault inception angle, and fault type parameters, as well as transformer energizations. The method presented an excellent success rate regarding the correct classification of the disturbance as well as an accurate fault classification.

Index Terms—Artificial neural networks (ANNs), current transformer saturation, differential protection, power transformers.

I INTRODUCTION

Power transformer is one of the most important device in electrical power systems, since its operation is associated to the continuity of the electrical energy supply by interconnecting networks with different voltage levels. Faults in transformers are considered the most severe disturbances in transmission networks [1]. Therefore, a quick and accurate diagnosis of faults is very important and vital for the electrical power system. Among the power transformer protection schemes, the differential function has been used in relay largely. Basically, this function compares the currents that flow through the terminals of the protected transformer, so that in the occurrence of an internal fault, the equipment must be disconnected from the electrical system [2]. However, a great disadvantage of this technique is associated to the relay misoperation during inrush currents in the transformer energization maneuver or external fault clearance situations, as well as the presence of the distorted currents due to the current transformer (CT) saturation. In order to face these limitations, new techniques and methods based on artificial intelligence and signal processing have been applied for discriminating internal faults from other power transformer disturbances accurately [3], [4], [5]. Among these algorithms, the wavelet transform is an efficient tool for analysis of non-stationary signals at different levels of time frequency, which makes it widely applicable in the detection of electrical power system disturbances [6] [7], with applicability to the power transformer differential neural networks (ANN) able to solve many problems of pattern classification, such as fault classification in transmission lines [9], [10], [11].

II Literature

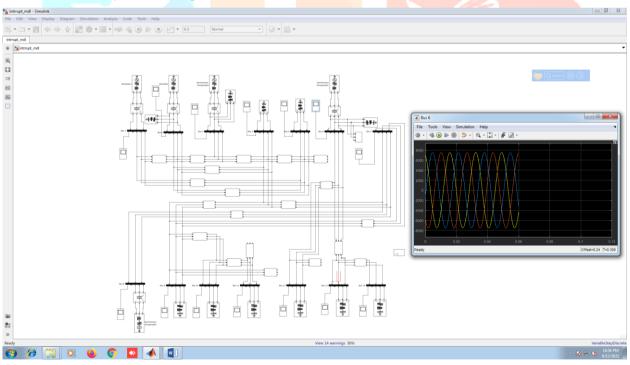

The differential protection used for transformers is based on the principle of current circulation. This type of protection is mostly used for transformers as this responds not only to inter turn fault but also provides protection In a power transformer, the currents in primary and secondary are to be compared As these two currents are usually different, therefore the use of identical transformers will give differential current and operate the relay even under no load conditions.[9]

Since Morlet first began to use wavelet analysis, it has been widely studied by many mathematicians, physicist, engineers, etc. today, its interest is spread out on not only theoretical but various applied fields, for example, speech or image signal processing, vibration analysis and so on. The wavelet analysis need not to use a single window function in all frequency components, or has linear resolution in the whole frequency domain that are weak points for Fourier analysis. There is enough reason that much interest concentrates on wavelet in time-frequency analysis [11].

The differential protection concepts are based on the assumption that during internal fault, the fundamental component of differential current becomes higher than no-load current. In this area several protection scheme have been developed to solve various difficulties (such as magnetizing inrush current) (6).

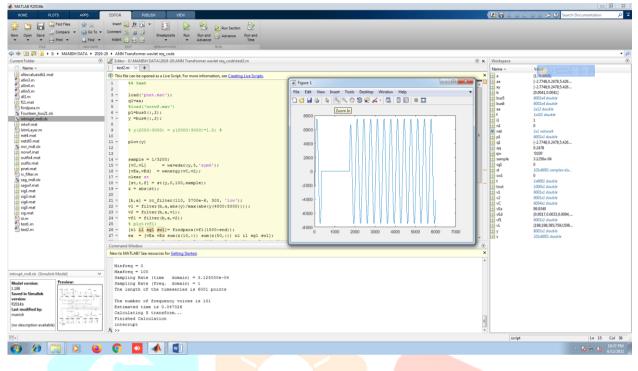
III DIFFERENTIAL PROTECTION

The differential protection relay compares the currents that flow through the power transformer windings. As an example, Fig. depicts a typical differential protection scheme for a single-phase two-winding power transformer, in which N1:N2 corresponds to the ratios of the power transformer, and 1 : n1 and 1 : n2 correspond, respectively, to the ratios of the current transformers (CT1 and CT2). The CT ratios are usually selected to satisfy the condition N1n1 = N2n2.

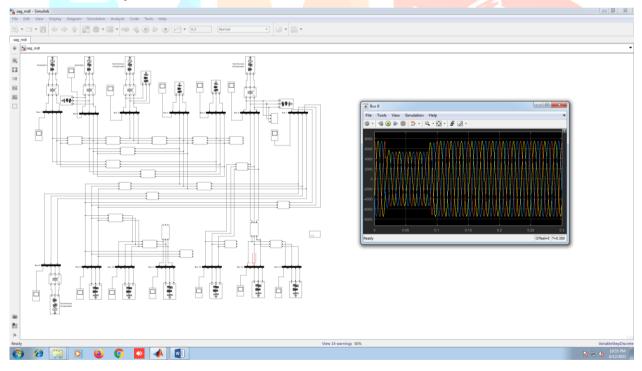


According to Fig. 2, under normal operation conditions, the CT secondary currents I1s and I2s are approximately equal. However, when an internal fault occur, this condition is no longer verified, and the difference between I1s and I2s becomes much large.

IV. RESULT


The algorithm uses wavelet based disturbance detector in order to detect any disturbance related to a power transformer, whereas a neural network based routine is used to classify the disturbance type (internal fault, external fault and transformer energization) appropriately, as well as to classify the internal faults. Several events were simulated, the motivation of this project was to design, simulate, and construct an IEEE 14 bus power system for future use in a lab setting to test, in real time, novel control techniques for various forms of generation and their impacts on the stability of the grid

Fourteen Bus bar System interrupt Fault



Classification Shows

Interruption

Fourteen Bus bar System SAG Fault

Classification Shows

SAG

Open Save	tesert 🖳 for 🔝 🔹 📰 🔛 🔛 Run Section 😥 Comment 🗞 🔅 😒 💱 Breakpoints Run Run and 🕒 Advance Run and			
FILE NAVIGATE	Indent D I I I I I I I I I I I I I I I I I I			
🕨 🔀 😺 🕨 E: 🕨 MANISH DATA 🕨 2019-:	0 > ANN Transformer wavlet reg_code			
nt Folder 💿	Z Editor - E\MANISH DATA\2019-20\ANN Transformer waviet req_code\test2.m	• ×	Workspace	
Name -	test2.m X +		Name 🔶	Value
illesvaluesdb1.mat	This file can be opened as a Live Script. For more information, see Creating Live Scripts.	×	11 a	[1,-0.9918]
llin3.m	1 %% test		🔠 aa	[-2.7748,0.2478,5.426
llin4.m llin5.m	2	<u></u>	🔜 ay	[-2.7748;0.2478;5.426
B.m	<pre>3 - load('pnet.mat');</pre>		b b	[0.0041,0.0041]
D.m.t	4 - g1=aj		bus5	6001x4 double
indpara.m	5 \$load('norwf.mat')		bus6	6001x4 double
ourteen_bus21.sk	6 - pl=bus5(:,2);		ea ea	1x12 double
trrupt_mdl.slx	7 - y =bus6(1,2);		a f	1x101 double
itwf.mat			nl	0
tmLayer.m	<pre>9 % y(2000:3000) = y(2000:3000)*1.5; %</pre>		e net	1x1 network
tt4.mat	19	-	p1	6001x1 double
etdi3.mat	11 - plot(y)		1 g1	(-2.7748,0.2478,5.426
or_mdl.stx	12		99	5.4263
orwf.mat	13		2 gw	.0010.
utfis4.mat	14 - sample = 1/3200;		sample	3.1250e-04
atfis.mat	15 - (vC, vL) = wavedec(y, 5, 'sym6');		e sgl	1
set.mat	<pre>16 - [vEa, vEd] = wenergy(vC, vL);</pre>	_	at st	101x6001 complex do
_filter.m	17 - Clear at		two sw1	0
sg_mdl.sk	18 - [st,t,f] = st(y,0,100,sample);		t t	1x6001 double
agwf.mat	19 - z = abs(st);		tout tout	1000x1 double
ig1.mat ig3.mat	20		1v1	6001x1 double
ig4.mat	21 - [b,s] = rc_filter(110, 3700e-6, 300, 'low'):		↓ √2	6001x1 double
ig5.mat	22 - v1 = filter(b,a,abs(y)/max(abs(y(4000:5000))));		VC VEa	605-bd double 99.9871
ig.mat	23 - v2 = filter(b, a, v1);		vEd	[4.2305e-05,1.4727e-0
Lm	24 - vfl = filter(b, a, v2);		1	6001x1 double
estl.m	25 % plot(vfi)		U VL	[198:198:385:759:1508
est2.m	26 - [n1 i1 sgl swl] = findpara(vfl(1500:end));		H v	6001x1 double
	<pre>27 = ea = [vEa vEd sum(z(10, :)) sum(z(50, :)) nl il sgl swl];</pre>	-	iii'i	101x6001 double
	Command Window	•		
	Commense virtualse New to MATLABY See resources for <u>Setting Started</u> .	×		
	Minfreg = 0	*		
	Manfreq = 00			
.stx (Simulink Model) 🗸 🗸	Marreq = 100 Sampling Rate (time domain) = 3.125000e-04			
version Preview:	Sampling Rate (line domain) = 3.1250000-04			
	sampling mate (req. domain) = 1 The length of the timeseries is 6001 points			
	the second s			
	The number of frequency voices is 101			
	International of a requestory volume and the			
odified by:	Calculating S transform			
and a set from the	Finished Calculation			
scription available)	ang and a second	#		
copuon eveneure/	A SS	*		
	[28 PP			

CONCLUSION

A novel technique for distinguishing between inrush currents and short-circuit currents in transformer systems by combining wavelet transform and neural network technique. The ability of wavelets to decompose the signal into frequency bands in both time and frequency allows accurate fault detection. Since this method is used for discontinuity analysis of the signals, even if the fault occurs at the lowest time space with high impedance at the fault location, detail coefficients of the signal give us faulty condition.

The ANN correctly classifies the fault with advantages in accuracy and speed upon classical algorithms. A faster response is obtained since only a quarter of cycle from the occurrence of the fault is required. The performance shown demonstrates that the proposed technique gives a very high accuracy in classification of the transients ($\approx 99\%$). The proposed technique can be used as an attractive and effective approach for alternative protection algorithm for large power transformers.

References

1) J'essika Fonseca Fernandes, Fl'avio Bezerra Costa, and Rodrigo Prado de Medeiros "Power Transformer Disturbance Classification Based on the Wavelet Transform and Artificial Neural Networks" 2016 International Joint Conference on Neural Networks (IJCNN)

2) Ênio C. Segatto and Denis V. Coury, "A Differential Relay for Power Transformers Using Intelligent Tools" IEEE TRANSACTIONS ON POWER SYSTEMS, VOL. 21, NO. 3, AUGUST 2006

3) Mohammad Nayeem A Tahasildar & S. L. Shaikh "A Novel Technique for Power Transformer Protection based on Combined Wavelet Transformer" ISSN (Print) : 2278-8948, Volume-2, Issue-4, 2013

4) F. B. Costa, K. M. Silva, B. A. Souza, *and* K. M. C. Dantas and N. S. D. Brito "A Method for Fault Classification in Transmission Lines Based on ANN and Wavelet Coefficients Energy" 2006 International Joint Conference on Neural Networks.

5)Iswadi HR, Redy Mardiana "Differential Power Transformer Protection Technique Using the Wavelet Packet Transform Approach" Proceedings of the International Conference on Electrical Engineering and Informatics June 17-19, 2007

6) M. O. Oliveira and A. S. Bretas "Application of Discrete Wavelet Transform for Differential Protection of Power Transformers" 2009 IEEE

7) R. P. Medeiros, F. B. Costa and K. M. Silva "Power Transformer Differential Protection Using the Boundary Discrete Wavelet Transform" 2015 IEEE.

8) T.Raja Pandi1, MKNM.Sakthi Nagaraj2, N.Panneer Selvam "The Analysis of Power Transformer from Differential Protection Using Back Propagation Neural Algorithm" International Journal of Innovative Research in Computer and Communication Engineering Vol.2, Special Issue 1, March 2014

9) S.Sudha and A. Ebenezer Jeyakumar "Wavelet and ANN Based Relaying for Power Transformer Protection" Journal of Computer Science 3 (6): 454-460, 2007

10) Okan Özgönenel "Wavelet based ANN Approach for Transformer Protection" International Journal of Electrical, Computer, Energetic, Electronic and Communication Engineering Vol:2, No:6, 2008

11) M. Žarkovic and Z. Stojkovic, "Analysis of artificial intelligence expert systems for power transformer condition monitoring and diagnostics," Electric Power Systems Research, vol. 149, pp. 125–136, 2017

12) B. Saravanan and A. Rathinam, "Inrush blocking scheme in transformer differential protection," *Energy Procedia*, vol. 117, pp. 1165–1171, 2017

13) Tamer Khatib¹ and Gazi Arar²"Identification of Power Transformer Currents by Using Random Forest and Boosting Techniques"Published18 Sep 2020.

14) A. Behvandi, S. G. Seifossadat, and A. Saffarian, "A new method for discrimination of internal fault from other transient states in power transformer using Clarke's transform and modified hyperbolic S-transform," *Electric Power Systems Research*, vol. 178, Article ID 106023, 2020.